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But first,

One final useful statistical technique from Part |l



Confidence Intervals

Motivation: p-values tell a nice succinct story but neglect a lot of information.

Estimating a point, approximated as normal (e.g. error or mean)
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find Cl% based on standard normal distribution (i.e. Cl% =95, z = 1.96)



Resampling Techniques Revisited

The bootstrap

e \What if we don’t know the distribution?




Resampling Techniques Revisited

The bootstrap

e \What if we don’t know the distribution?
e Resample many potential distributions based on the observed data and find
the range that Cl% of the data fall in (e.g. mean).

Resample: for each i in n observations, put all observations in a hat and draw one
(all observations are equally likely).




Clustering and Prediction

(now back to our regularly scheduled program)



|. Probability Theory

ll. Discovery: Quantitative Research Methods

. Clustering and Prediction

(now back to our regularly scheduled program)



Clustering and Prediction
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Overfitting (1-d example)

Degree 1
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.47e+08)
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(image credit: Scikit-learn; in practice data are rarely this clear)



Common Goal: Generalize to new data

Does the
model hold up?
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Feature Selection / Subset Selection

Forward Stepwise Selection:

e start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
e foriinrange(k)
#find best p to add to current_model:
for p in remaining_prepdictors
refit current._model with p
#add best p, based on RSSIo to current_model
#remove p from remaining predictors



Regularization (Shrinkage)
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Why just keep or discard features?



Regularization (L2, Ridge Regression)
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|ldea: Impose a penalty on size of weights:

Ordinary least squares objective:
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Regularization (L2, Ridge Regression)
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Regularization (L2, Ridge Regression)

10

|ldea: Impose a penalty on size of weights:
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Ordinary least squares objective:
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Regularization (L1, The “Lasso”)

10

Idea: Impose a penalty and zero-out
some weights

The Lasso Objective:

new weight
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No closed form matrix solution, but
often solved with coordinate descent. IR

Application: m=n or m>>n



Regularization (L1L2, “Elastic Net")



Regularized Logistic Regression



NFold Cross-Validation

Goal: Decent estimate of model accuracy



Common Goal: Generalize to new data
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