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But first, 
One final useful statistical technique from Part II



Confidence Intervals

Motivation: p-values tell a nice succinct story but neglect a lot of information.

Estimating a point, approximated as normal (e.g. error or mean)

find CI% based on standard normal distribution   (i.e. CI% = 95, z = 1.96)
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Resampling Techniques Revisited

The bootstrap

● What if we don’t know the distribution?
● Resample many potential distributions based on the observed data and find 

the range that CI% of the data fall in (e.g. mean). 

Resample: for each i in n observations, put all observations in a hat and draw one 
(all observations are equally likely). 



Clustering and Prediction
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Clustering and Prediction
(now back to our regularly scheduled program)

I. Probability Theory

II. Discovery: Quantitative Research Methods

III.
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M < ~5     or  m << n
                    (much less)

M > ~100  or m � n or m >> n
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Overfitting (1-d example)

Underfit Overfit
High Bias High Variance
(image credit: Scikit-learn; in practice data are rarely this clear)
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Common Goal: Generalize to new data
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Feature Selection / Subset Selection

Forward Stepwise Selection:

● start with current_model just has the intercept (mean)
remaining_predictors = all_predictors

● for i in range(k)
#find best p to add to current_model:
for p in remaining_prepdictors

refit current_model with p
       #add best p, based on RSSp to current_model

#remove p from remaining predictors



Regularization (Shrinkage)

No selection (weight=beta) forward stepwise

Why just keep or discard features? 



Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:
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Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

In Matrix Form:

I: m x m identity matrix



Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out
  some weights

The Lasso Objective:

No closed form matrix solution, but 
often solved with coordinate descent.

Application:  m ≅ n   or   m >> n



Regularization (L1L2, “Elastic Net”)



Regularized Logistic Regression



NFold Cross-Validation

Goal: Decent estimate of model accuracy



Common Goal: Generalize to new data
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